Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948365

RESUMO

It is known that cells contain various uncommon nucleotides such as dinucleoside polyphosphates (NpnN's) and adenosine 5'-phosphoramidate (NH2-pA) belonging to nucleoside 5'-phosphoramidates (NH2-pNs). Their cellular levels are enzymatically controlled. Some of them are accumulated in cells under stress, and therefore, they could act as signal molecules. Our previous research carried out in Arabidopsis thaliana and grape (Vitis vinifera) showed that NpnN's induced the expression of genes in the phenylpropanoid pathway and favored the accumulation of their products, which protect plants against stress. Moreover, we found that NH2-pA could play a signaling role in Arabidopsis seedlings. Data presented in this paper show that exogenously applied purine (NH2-pA, NH2-pG) and pyrimidine (NH2-pU, NH2-pC) nucleoside 5'-phosphoramidates can modify the expression of genes that control the biosynthesis of both stilbenes and lignin in Vitis vinifera cv. Monastrell suspension-cultured cells. We investigated the expression of genes encoding for phenylalanine ammonia-lyase (PAL1), cinnamate-4-hydroxylase (C4H1), 4-coumarate:coenzyme A ligase (4CL1), chalcone synthase (CHS1), stilbene synthase (STS1), cinnamoyl-coenzyme A:NADP oxidoreductase (CCR2), and cinnamyl alcohol dehydrogenase (CAD1). Each of the tested NH2-pNs also induced the expression of the trans-resveratrol cell membrane transporter VvABCG44 gene and caused the accumulation of trans-resveratrol and trans-piceid in grape cells as well as in the culture medium. NH2-pC, however, evoked the most effective induction of phenylpropanoid pathway genes such as PAL1, C4H1, 4CL1, and STS1. Moreover, this nucleotide also induced at short times the accumulation of N-benzoylputrescine (BenPut), one of the phenylamides that are derivatives of phenylpropanoid and polyamines. The investigated nucleotides did not change either the lignin content or the cell dry weight, nor did they affect the cell viability throughout the experiment. The results suggest that nucleoside 5'-phosphoramidates could be considered as new signaling molecules.


Assuntos
Amidas/metabolismo , Lignina/metabolismo , Nucleosídeos/metabolismo , Ácidos Fosfóricos/metabolismo , Estilbenos/metabolismo , Vitis/metabolismo , Vias Biossintéticas , Técnicas de Cultura de Células , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Lignina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Vitis/citologia , Vitis/enzimologia , Vitis/genética
2.
Plant Physiol Biochem ; 147: 125-132, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31855818

RESUMO

It is known that the concentration of dinucleoside polyphosphates (NpnN's) in cells increases under stress and that adverse environmental factors induce biosynthesis of phenylpropanoids, which protect the plant against stress. Previously, we showed that purine NpnN's such as Ap3A and Ap4A induce both the activity of enzymes of the phenylpropanoid pathway and the expression of relevant genes in Arabidopsis seedlings. Moreover, we showed that Ap3A induced stilbene biosynthesis in Vitis vinifera cv. Monastrell suspension cultured cells. Data presented in this paper show that pyrimidine-containing NpnN's also modify the biosynthesis of stilbenes, affecting the transcript level of genes encoding key enzymes of the phenylpropanoid pathway and of these, Up4U caused the most effective accumulation of trans-resveratrol in the culture media. Similar effect was caused by Ap3A and Gp3G. Other pyrimidine NpnN's, such as Cp3C, Cp4C, and Ap4C, strongly inhibited the biosynthesis of stilbenes, but markedly (6- to 8-fold) induced the expression of the cinnamoyl-CoA reductase gene that controls lignin biosynthesis. Purine counterparts also clearly induced biosynthesis of trans-resveratrol and trans-piceid, but only slightly induced the expression of genes involved in lignin biosynthesis. In cells, Up3U caused a greater accumulation of trans-resveratrol and trans-piceid than did Up4U. Each of the NpnN's studied induced expression of the gene encoding the resveratrol transporter VvABCG44, which operates within the Vitis vinifera cell membrane. AMP, GMP, UMP, and CMP, potential products of NpnN degradation, did not affect the accumulation of stilbenes. The results obtained strongly support that NpnN's play a role as signaling molecules in plants.


Assuntos
Fosfatos de Dinucleosídeos , Vitis , Células Cultivadas , Fosfatos de Dinucleosídeos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Purinas/química , Pirimidinas/química , Estilbenos/metabolismo , Vitis/efeitos dos fármacos
3.
Biosci Rep ; 35(4)2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26181368

RESUMO

Fhits (fragile histidine triad proteins) occur in eukaryotes but their function is largely unknown, although human Fhit is believed to act as a tumour suppressor. Fhits also exhibit dinucleoside triphosphatase, adenylylsulfatase and nucleoside phosphoramidase activities that in each case yield nucleoside 5'-monophosphate as a product. Due to the dinucleoside triphosphatase activity, Fhits may also be involved in mRNA decapping. In the present study, we demonstrate Fhit-catalysed ammonolysis of adenosine 5'-phosphosulfate, which results in the formation of adenosine 5'-phosphoramidate. This reaction has previously been associated with adenylylsulfate-ammonia adenylyltransferase (EC 2.7.7.51). Our finding shows that the capacity to catalyse ammonolysis is another inherent property of Fhits. Basic kinetic parameters and substrate specificity of this reaction catalysed by human Fhit are presented.


Assuntos
Hidrolases Anidrido Ácido/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Lupinus/enzimologia , Proteínas de Neoplasias/química , Nucleotidiltransferases/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia , Hidrolases Anidrido Ácido/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Humanos , Cinética , Lupinus/genética , Proteínas de Neoplasias/genética , Nucleotidiltransferases/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética
4.
Can J Physiol Pharmacol ; 93(7): 585-95, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26120822

RESUMO

Hydrogen sulfide (H2S) is synthesized in perivascular adipose tissue (PVAT) and induces vasorelaxation. We examined whether the sulfur-containing AMP and GMP analogs AMPS and GMPS can serve as the H2S donors in PVAT. H2S production by isolated rat periaortic adipose tissue (PAT) was measured with a polarographic sensor. In addition, phenylephrine-induced contractility of aortic rings with (+) or without (-) PAT was examined. Isolated PAT produced H2S from AMPS or GMPS in the presence of the P2X7 receptor agonist BzATP. Phenylephrine-induced contractility of PAT(+) rings was lower than of PAT(-) rings. AMPS or GMPS had no effect on the contractility of PAT(-) rings, but used together with BzATP reduced the contractility of PAT(+) rings when endogenous H2S production was inhibited with propargylglycine. A high-fat diet reduced endogenous H2S production by PAT. Interestingly, AMPS and GMPS were converted to H2S by PAT of obese rats, and reduced contractility of PAT(+) aortic rings isolated from these animals even in the absence of BzATP. We conclude that (i) AMPS and GMPS can be hydrolyzed to H2S by PAT when P2X7 receptors are activated, (ii) a high-fat diet impairs endogenous H2S production by PAT, (iii) AMPS and GMPS restore the anticontractile effects of PAT in obese animals without P2X7 stimulation.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Tecido Adiposo/metabolismo , Aorta/efeitos dos fármacos , Guanosina Monofosfato/farmacologia , Sulfeto de Hidrogênio/metabolismo , Tionucleotídeos/farmacologia , Vasodilatação/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Tecido Adiposo/efeitos dos fármacos , Animais , Aorta/metabolismo , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/metabolismo , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Técnicas In Vitro , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos Wistar
5.
Plant Physiol Biochem ; 94: 144-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26079287

RESUMO

Cells contain various congeners of the canonical nucleotides. Some of these accumulate in cells under stress and may function as signal molecules. Their cellular levels are enzymatically controlled. Previously, we demonstrated a signaling function for diadenosine polyphosphates and cyclic nucleotides in Arabidopsis thaliana and grape, Vitis vinifera. These compounds increased the expression of genes for and the specific activity of enzymes of phenylpropanoid pathways resulting in the accumulation of certain products of these pathways. Here, we show that adenosine 5'-phosphoramidate, whose level can be controlled by HIT-family proteins, induced similar effects. This natural nucleotide, when added to A. thaliana seedlings, activated the genes for phenylalanine:ammonia lyase, 4-coumarate:coenzyme A ligase, cinnamate-4-hydroxylase, chalcone synthase, cinnamoyl-coenzyme A:NADP oxidoreductase and isochorismate synthase, which encode proteins catalyzing key reactions of phenylpropanoid pathways, and caused accumulation of lignins, anthocyanins and salicylic acid. Adenosine 5'-phosphofluoridate, a synthetic congener of adenosine 5'-phosphoramidate, behaved similarly. The results allow us to postulate that adenosine 5'-phosphoramidate should be considered as a novel signaling molecule.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Arabidopsis/metabolismo , Propanóis/metabolismo , Ácido Salicílico/metabolismo , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia
6.
Biochem J ; 468(2): 337-44, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25826698

RESUMO

Fragile histidine triad (HIT) proteins (Fhits) occur in all eukaryotes but their function is largely unknown. Human Fhit is presumed to function as a tumour suppressor. Previously, we demonstrated that Fhits catalyse hydrolysis of not only dinucleoside triphosphates but also natural adenosine 5'-phosphoramidate (NH2-pA) and adenosine 5'-phosphosulfate (SO4-pA) as well as synthetic adenosine 5'-phosphorofluoridate (F-pA). In the present study, we describe an Fhit-catalysed displacement of the amino group of nucleoside 5'-phosphoramidates (NH2-pNs) or the sulfate moiety of nucleoside 5'-phosphosulfates (SO4-pNs) by fluoride anion. This results in transient accumulation of the corresponding nucleoside 5'-phosphorofluoridates (F-pNs). Substrate specificity and kinetic characterization of the fluorolytic reactions catalysed by the human Fhit and other examples of involvement of fluoride in the biochemistry of nucleotides are described. Among other HIT proteins, human histidine triad nucleotide-binding protein (Hint1) catalysed fluorolysis of NH2-pA 20 times and human Hint2 40 times more slowly than human Fhit.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Monofosfato de Adenosina/análogos & derivados , Adenosina Fosfossulfato/metabolismo , Fluoretos/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfatos/metabolismo , Monofosfato de Adenosina/metabolismo , Catálise , Humanos , Cinética , Estrutura Molecular , Especificidade por Substrato
7.
Plant Physiol Biochem ; 84: 271-276, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25310254

RESUMO

Dinucleoside polyphosphates are considered as signal molecules that may evoke response of plant cells to stress. Other compounds whose biological effects have been recognized are cyclodextrins. They are cyclic oligosaccharides that chemically resemble the alkyl-derived pectic oligosaccharides naturally released from the cell walls during fungal attack, and they act as true elicitors, since, when added to plant cell culture, they induce the expression of genes involved in some secondary metabolism pathways. Previously, we demonstrated that some dinucleoside polyphosphates triggered the biosynthesis of enzymes involved in the phenylpropanoid pathway in Arabidopsis thaliana. In Vitis vinifera suspension cultured cells, cyclodextrins were shown to enhance the accumulation of trans-resveratrol, one of the basic units of the stilbenes derived from the phenylpropanoid pathway. Here, we show that diadenosine triphosphate, applied alone or in combination with cyclodextrins to the grapevine suspension-cultured cells, increased the transcript level of genes encoding key phenylpropanoid-pathway enzymes as well as the trans-resveratrol production inside cells and its secretion into the extracellular medium. In the latter case, these two compounds acted synergistically. However, the accumulation of trans-resveratrol and its glucoside trans-piceid inside cells were stimulated much better by diadenosine triphosphate than by cyclodextrins.


Assuntos
Ciclodextrinas/farmacologia , Fosfatos de Dinucleosídeos/farmacologia , Estilbenos/metabolismo , Vitis/efeitos dos fármacos , Vitis/metabolismo , Células Cultivadas , Sinergismo Farmacológico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Resveratrol
8.
Pharmacol Res ; 81: 34-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24508566

RESUMO

Hydrogen sulfide (H2S) is the gasotransmitter enzymatically synthesized in mammalian tissues from l-cysteine. H2S donors are considered as the potential drugs for the treatment of cardiovascular, neurological and inflammatory diseases. Recently, it has been demonstrated that synthetic nucleotide analogs, adenosine- and guanosine 5'-monophosphorothioates (AMPS and GMPS) can be converted to H2S and AMP or GMP, respectively, by purified histidine triad nucleotide-binding (Hint) proteins. We examined if AMPS and GMPS can be used as the H2S donors in intact biological systems. H2S production by isolated rat kidney glomeruli was measured by the specific polarographic sensor. H2S production was detected when glomeruli were incubated with AMPS or GMPS and ionotropic purinergic P2X7 receptor/channel agonist, BzATP. More H2S was generated from GMPS than from equimolar amount of AMPS. Nucleoside phosphorothioates together with BzATP relaxed angiotensin II-preconstricted glomeruli. In addition, infusion of AMPS or GMPS together with BzATP into the renal artery increased filtration fraction and glomerular filtration rate but had no effect on renal vascular resistance or renal blood flow. AMPS but not GMPS was converted to adenosine by isolated glomeruli, however, adenosine was not involved in AMPS-induced H2S synthesis because neither adenosine nor specific adenosine receptor agonists had any effect on H2S production. AMPS, but not GMPS, increased phosphorylation level of AMP-stimulated protein kinase (AMPK), but AMPK inhibitor, compound C, had no effect on AMPS-induced H2S production. In conclusion, nucleoside phosphorothioates are converted to H2S which relaxes isolated kidney glomeruli in vitro and increases glomerular filtration rate in vivo. AMPS and GMPS can be used as the H2S donors in experimental studies and possibly also as the H2S-releasing drugs.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Guanosina Monofosfato/farmacologia , Sulfeto de Hidrogênio/metabolismo , Glomérulos Renais/efeitos dos fármacos , Tionucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Taxa de Filtração Glomerular/efeitos dos fármacos , Técnicas In Vitro , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiologia , Masculino , Agonistas do Receptor Purinérgico P2X/farmacologia , Ratos Wistar
9.
Acta Biochim Pol ; 60(2): 249-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23772423

RESUMO

Adenosine 5'-phosphoramidate (NH2-pA) is a rare natural nucleotide and its biochemistry and biological functions are poorly recognized. All organisms have proteins that may be involved in the catabolism of NH2-pA. They are members of the HIT protein family and catalyze hydrolytic splitting of NH2-pA to 5'-AMP and ammonia. At least five HIT proteins have been identified in mammals; however, the enzymatic and molecular properties of only Fhit and Hint1 have been comprehensively studied. Our study focuses on the Hint2 protein purified by a simple procedure to homogeneity from sheep liver mitochondrial fraction (OaHint2). Hint1 protein was also prepared from sheep liver (OaHint1) and the molecular and kinetic properties of the two proteins compared. Both function as homodimers and behave as nucleoside 5'-phosphoramidate hydrolases. The molecular mass of the OaHint2 monomer is 16 kDa and that of the OaHint1 monomer 14.9 kDa. Among potential substrates studied, NH2-pA appeared to be the best; the Km and kcat values estimated for this compound are 6.6 µM and 68.3 s⁻¹, and 1.5 µM and 11.0 s⁻¹ per natively functioning dimer of OaHint2 and OaHint1, respectively. Studies of the rates of hydrolysis of different NH2-pA derivatives show that Hint2 is more specific towards compounds with a P-N bond than Hint1. The thermostability of these two proteins is also compared.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , N-Glicosil Hidrolases/metabolismo , Hidrolases Anidrido Ácido/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Estabilidade Enzimática , Cinética , Mitocôndrias Hepáticas/enzimologia , N-Glicosil Hidrolases/química , Carneiro Doméstico , Especificidade por Substrato
10.
J Med Chem ; 54(19): 6482-91, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21834513

RESUMO

New synthetic protocol for the preparation of nucleoside 5'-(N-aryl)phosphoramidate monoesters 4 was developed. It consisted of a condensation of the corresponding nucleoside 5'-H-phosphonates with aromatic- or heteroaromatic amines promoted by diphenyl phosphorochloridate, followed by oxidation of the produced H-phosphonamidates with iodine/water. 5'-(N-Aryl)phosphoramidate monoesters derived from 3'-azido-3'-deoxythymidine (AZT) or 2',3'-dideoxyuridine (ddU) nucleosides and various aromatic and heteroaromatic amines were evaluated as potential anti-HIV drugs. It was found that these compounds act most likely as pronucleotides and that some of them have therapeutic indices superior to those of the reference AZT.


Assuntos
Fármacos Anti-HIV/síntese química , Organofosfonatos/síntese química , Nucleosídeos de Pirimidina/síntese química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Células Cultivadas , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Organofosfonatos/química , Organofosfonatos/farmacologia , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/farmacologia , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Relação Estrutura-Atividade
11.
Protein Pept Lett ; 18(8): 817-24, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21443501

RESUMO

This is report of mutational analysis of higher plant 5'-methylthioadenosine nucleosidase (MTAN). We identified and characterized the gene encoding yellow lupine (Lupinus luteus) MTAN (LlMTAN). The role of active site amino acids residues Glu24, Phe134, Glu188 and Asp211 was analyzed by site-directed mutagenesis. The Glu24Gln and Asp211Asn substitutions completely abolished the enzyme activity. The Glu188Gln mutant showed only trace activity toward 5'-methylthioadenosine. These results indicate that these three amino acid residues are necessary for enzyme activity. Furthermore, as the result of replacement of Phe134 by less bulky leucine, LlMTAN acquired the ability to bind and hydrolyze S-adenosylhomocysteine. We also analyzed the sequence of the LlMTAN promoter region. It appeared that there may be a direct link between LlMTAN expression regulation and sulfate metabolism.


Assuntos
Lupinus/enzimologia , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/genética , Sequência de Aminoácidos , Domínio Catalítico/genética , Análise Mutacional de DNA , Desoxiadenosinas/metabolismo , Cinética , Lupinus/genética , Modelos Moleculares , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Purina-Núcleosídeo Fosforilase/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Tionucleosídeos/metabolismo
12.
Acta Biochim Pol ; 58(1): 131-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21403921

RESUMO

Adenosine 5'-phosphoramidate (NH2-pA) is an uncommon natural nucleotide of poorly understood biochemistry and function. We studied a plant enzyme potentially involved in the catabolism of NH2-pA. A fast and simple method comprising extraction of yellow lupin (Lupinus luteus) seed-meal with a low ionic strength buffer, ammonium sulfate and acetone fractionations, removal of contaminating proteins by heat denaturation, and affinity chromatography on AMP-agarose, yielded homogenous nucleoside 5'-phosphoramidase. Mass spectrometric analysis showed that the lupin hydrolase exhibits closest similarity to Arabidopsis thaliana Hint1 protein. The substrate specificity of the lupin enzyme, in particular its ability to split the P-S bond in adenosine 5'-phosphorothioate, is typical of known Hint1 proteins. Adenosine 5'-phosphofluoride and various derivatives of guanosine 5'-phosphoramidate were also substrates. Neither common divalent metal cations nor 10 mM EDTA or EGTA affected the hydrolysis of NH2-pA. The enzyme functions as a homodimer (2 x 15,800 Da). At the optimum pH of 7.0, the K(m) for NH2-pA was 0.5 µM and k(cat) 0.8 s⁻¹ (per monomer active site). The properties of the lupin nucleoside 5'-phosphoramidase are compared with those of its counterparts from other organisms.


Assuntos
Lupinus/enzimologia , N-Glicosil Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Sementes/enzimologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Ácido Edético/farmacologia , Ácido Egtázico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Dados de Sequência Molecular , Estrutura Molecular , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/isolamento & purificação , Nucleotídeos/química , Nucleotídeos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
13.
FEBS Open Bio ; 1: 1-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23650569

RESUMO

It is known that cells under stress accumulate various dinucleoside polyphosphates, compounds suggested to function as alarmones. In plants, the phenylpropanoid pathways yield metabolites protecting these organisms against various types of stress. Observations reported in this communication link these two phenomena and provide an example of a metabolic "addressee" for an "alarm" signaled by diadenosine triphosphate (Ap3A) or diadenosine tetraphosphate (Ap4A). In response to added Ap3A or Ap4A, seedlings of Arabidopsis thaliana incubated in full nutrition medium increased both the expression of the genes for and the specific activity of phenylalanine ammonia-lyase and 4-coumarate:coenzyme A ligase, enzymes that control the beginning of the phenylpropanoid pathway. Neither adenine mononucleotides (AMP, ADP or ATP) nor adenosine evoked such effects. Reactions catalyzed in vitro by these enzymes were not affected by Ap3A or Ap4A.

14.
FEBS Lett ; 584(1): 93-8, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-19896942

RESUMO

Histidine triad (HIT)-family proteins interact with different mono- and dinucleotides and catalyze their hydrolysis. During a study of the substrate specificity of seven HIT-family proteins, we have shown that each can act as a sulfohydrolase, catalyzing the liberation of AMP from adenosine 5'-phosphosulfate (APS or SO(4)-pA). However, in the presence of orthophosphate, Arabidopsis thaliana Hint4 and Caenorhabditis elegans DcpS also behaved as APS phosphorylases, forming ADP. Low pH promoted the phosphorolytic and high pH the hydrolytic activities. These proteins, and in particular Hint4, also catalyzed hydrolysis or phosphorolysis of some other adenylyl-derivatives but at lower rates than those for APS cleavage. A mechanism for these activities is proposed and the possible role of some HIT-proteins in APS metabolism is discussed.


Assuntos
Adenosina Fosfossulfato/metabolismo , Arabidopsis/enzimologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Hidrolases/metabolismo , Complexos Multienzimáticos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Sulfatases/metabolismo , Difosfato de Adenosina/biossíntese , Monofosfato de Adenosina/biossíntese , Animais , Proteínas de Arabidopsis , Concentração de Íons de Hidrogênio , Hidrólise , Fosforilação , Especificidade por Substrato
15.
RNA ; 15(8): 1554-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19541768

RESUMO

A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5'-mRNA cap, i.e., m(7)GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m(7)GMP (or m(2,7)GMP) as one of the reaction products. Interestingly, m(7)Gpppm(3)(N6, N6, 2'O)A was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m(7)Gpppm(3)(N6, N6, 2'O)Apm(2'O)Apm(2'O)Cpm(2)(N3, 2'O)U, that occurs in these organisms.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Hidrolases Anidrido Ácido/genética , Sequência de Aminoácidos , Animais , Fosfatos de Dinucleosídeos/metabolismo , Genes de Protozoários , Cinética , Metilação , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Protozoários/genética , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trypanosoma brucei brucei/genética
16.
FEBS J ; 276(6): 1546-53, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19210543

RESUMO

Dinucleoside polyphosphates (Np(n)N's; where N and N' are nucleosides and n = 3-6 phosphate residues) are naturally occurring compounds that may act as signaling molecules. One of the most successful approaches to understand their biological functions has been through the use of Np(n)N' analogs. Here, we present the results of studies using novel diadenosine polyphosphate analogs, with an oxymethylene group replacing one or two bridging oxygen(s) in the polyphosphate chain. These have been tested as potential substrates and/or inhibitors of the symmetrically acting Ap(4)A hydrolase [bis(5'-nucleosyl)-tetraphosphatase (symmetrical); EC 3.6.1.41] from E. coli and of two asymmetrically acting Ap(4)A hydrolases [bis(5'-nucleosyl)-tetraphosphatase (asymmetrical); EC 3.6.1.17] from humans and narrow-leaved lupin. The six chemically synthesized analogs were: ApCH(2)OpOCH(2)pA (1), ApOCH(2)pCH(2)OpA (2), ApOpCH(2)OpOpA (3), ApCH(2)OpOpOCH(2)pA (4), ApOCH(2)pOpCH(2)OpA (5) and ApOpOCH(2)pCH(2)OpOpA (6). The eukaryotic asymmetrical Ap(4)A hydrolases degrade two compounds, 3 and 5, as anticipated in their design. Analog 3 was cleaved to AMP (pA) and beta,gamma-methyleneoxy-ATP (pOCH(2)pOpA), whereas hydrolysis of analog 5 gave two molecules of alpha,beta-oxymethylene ADP (pCH(2)OpA). The relative rates of hydrolysis of these analogs were estimated. Some of the novel nucleotides were moderately good inhibitors of the asymmetrical hydrolases, having K(i) values within the range of the K(m) for Ap(4)A. By contrast, none of the six analogs were good substrates or inhibitors of the bacterial symmetrical Ap(4)A hydrolase.


Assuntos
Hidrolases Anidrido Ácido/antagonistas & inibidores , Fosfatos de Dinucleosídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Oxigênio/química , Cromatografia Líquida de Alta Pressão , Fosfatos de Dinucleosídeos/química , Inibidores Enzimáticos/química , Hidrólise
17.
Circ Res ; 103(10): 1100-8, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18832747

RESUMO

Besides serving as a mechanical barrier, the endothelium has important regulatory functions. The discovery of nitric oxide revolutionized our understanding of vasoregulation. In contrast, the identity of endothelium-derived vasoconstrictive factors still remains uncertain. The supernatant from mechanically stimulated human microvascular endothelial cells elicited a potent vasoconstrictive response in the isolated perfused rat kidney. Whereas a nonselective purinoceptor blocker blocked this vasoactivity most potently, the inhibition of the endothelin receptor by BQ123 weakly affected that vasoconstrictive response. As a compound responsible for that vasoconstrictive effect, we have isolated from HMECs and identified the mononucleotide adenosine 5'-tetraphosphate (AP4). This nucleotide proved to be the most potent vasoactive purinergic mediator identified to date, exerting the vasoconstriction predominantly through activation of the P2X1 receptor. The intraarterial application of AP4 in a Wistar-Kyoto rat induced a strong increase of the mean arterial pressure. The plasma concentration of AP4 is in the nanomolar range, which, in vivo, induces a significant change in the mean arterial pressure. To our knowledge, AP4, which exerts vasoactive effects, is the most potent endogenous mononucleotide identified to date in mammals. The effects of AP4, the plasma concentration of AP4, and its release suggest that this compound functions as an important vasoregulator.


Assuntos
Nucleotídeos de Adenina/farmacologia , Células Endoteliais/metabolismo , Agonistas do Receptor Purinérgico P2 , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Nucleotídeos de Adenina/sangue , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Humanos , Rim/irrigação sanguínea , Rim/metabolismo , Peptídeos Cíclicos/farmacologia , Ratos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X , Vasoconstritores/sangue
18.
FEBS Lett ; 582(20): 3152-8, 2008 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-18694747

RESUMO

We show here that Fhit proteins, in addition to their function as dinucleoside triphosphate hydrolases, act similarly to adenylylsulfatases and nucleoside phosphoramidases, liberating nucleoside 5'-monophosphates from such natural metabolites as adenosine 5'-phosphosulfate and adenosine 5'-phosphoramidate. Moreover, Fhits recognize synthetic nucleotides, such as adenosine 5'-O-phosphorofluoridate and adenosine 5'-O-(gamma-fluorotriphosphate), and release AMP from them. With respect to the former, Fhits behave like a phosphodiesterase I concomitant with cleavage of the P-F bond. Some kinetic parameters and implications of the novel reactions catalyzed by the human and plant (Arabidopsis thaliana) Fhit proteins are presented.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Proteínas de Neoplasias/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Hidrolases Anidrido Ácido/genética , Proteínas de Arabidopsis/genética , Clonagem Molecular , Humanos , Proteínas de Neoplasias/genética , Diester Fosfórico Hidrolases/genética , Especificidade por Substrato
19.
FEBS Lett ; 581(5): 815-20, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17291501

RESUMO

Jasmonate:amino acid synthetase (JAR1) is involved in the function of jasmonic acid (JA) as a plant hormone. It catalyzes the synthesis of several JA-amido conjugates, the most important of which appears to be JA-Ile. Structurally, JAR1 is a member of the firefly luciferase superfamily that comprises enzymes that adenylate various organic acids. This study analyzed the substrate specificity of recombinant JAR1 and determined whether it catalyzes the synthesis of mono- and dinucleoside polyphosphates, which are side-reaction products of many enzymes forming acyl approximately adenylates. Among different oxylipins tested as mixed stereoisomers for substrate activity with JAR1, the highest rate of conversion to Ile-conjugates was observed for (+/-)-JA and 9,10-dihydro-JA, while the rate of conjugation with 12-hydroxy-JA and OPC-4 (3-oxo-2-(2Z-pentenyl)cyclopentane-1-butyric acid) was only about 1-2% that for (+/-)-JA. Of the two stereoisomers of JA, (-)-JA and (+)-JA, rate of synthesis of the former was about 100-fold faster than for (+)-JA. Finally, we have demonstrated that (1) in the presence of ATP, Mg(2+), (-)-JA and tripolyphosphate the ligase produces adenosine 5'-tetraphosphate (p(4)A); (2) addition of isoleucine to that mixture halts the p(4)A synthesis; (3) the enzyme produces neither diadenosine triphosphate (Ap(3)A) nor diadenosine tetraphosphate (Ap(4)A) and (4) Ap(4)A cannot substitute ATP as a source of adenylate in the complete reaction that yields JA-Ile.


Assuntos
Proteínas de Arabidopsis/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotídeos de Adenina/biossíntese , Adenosina Trifosfatases/metabolismo , Arabidopsis/enzimologia , Ciclopentanos/química , Ciclopentanos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Oxilipinas , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
20.
Phytochemistry ; 67(14): 1476-85, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16820181

RESUMO

Guanosine-inosine-preferring nucleoside N-ribohydrolase has been purified to homogeneity from yellow lupin (Lupinus luteus) seeds by ammonium sulfate fractionation, ion-exchange chromatography and gel filtration. The enzyme functions as a monomeric, 80kDa polypeptide, most effectively between pH 4.7 and 5.5. Of various mono- and divalent cations tested, Ca(2+) appeared to stimulate enzyme activity. The nucleosidase was activated 6-fold by 2mM exogenous CaCl(2) or Ca(NO(3))(2), with K(a)=0.5mM (estimated for CaCl(2)). The K(m) values estimated for guanosine and inosine were 2.7+/-0.3 microM. Guanosine was hydrolyzed 12% faster than inosine while adenosine and xanthosine were poor substrates. 2'-Deoxyguanosine, 2'-deoxyinosine, 2'-methylguanosine, pyrimidine nucleosides and 5'-GMP were not hydrolyzed. However, the enzyme efficiently liberated the corresponding bases from synthetic nucleosides, such as 1-methylguanosine, 7-methylguanosine, 1-N(2)-ethenoguanosine and 1-N(2)-isopropenoguanosine, but hydrolyzed poorly the ribosides of 6-methylaminopurine and 2,6-diaminopurine. MnCl(2) or ZnCl(2) inhibited the hydrolysis of guanosine with I(50) approximately 60 microM. Whereas 2'-deoxyguanosine, 2'-methylguanosine, adenosine, as well as guanine were competitive inhibitors of this reaction (K(i) values were 1.5, 3.6, 21 and 9.7 microM, respectively), hypoxanthine was a weaker inhibitor (K(i)=64 microM). Adenine, ribose, 2-deoxyribose, 5'-GMP and pyrimidine nucleosides did not inhibit the enzyme. The guanosine-inosine hydrolase activity occurred in all parts of lupin seedlings and in cotyledons it increased up to 5-fold during seed germination, reaching maximum in the third/fourth day. The lupin nucleosidase has been compared with other nucleosidases.


Assuntos
Cálcio/farmacologia , Guanosina/metabolismo , Lupinus/enzimologia , N-Glicosil Hidrolases/metabolismo , Cálcio/química , Cátions/química , Cromatografia em Gel , Cor , Guanosina/química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Lupinus/crescimento & desenvolvimento , Estrutura Molecular , Peso Molecular , N-Glicosil Hidrolases/isolamento & purificação , Extratos Vegetais , Subunidades Proteicas/metabolismo , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Sementes/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...